

Laboratory Advisory Committee (LAC) Meeting

September 14, 2015 Embassy Suites Syracuse, NY

- 1. Call to Order John Rhoads, Chair, LAC
- 2. Agenda Review and Repair
- 3. Appointment of Recording Secretary
- 4. Approval of Minutes from 2014 LAC Meeting attached
- 5. Old Business
 - a. Milk Pregnancy ELISA Samples Unknown Steven Sievert
- 6. QCS Laboratory Program Update Steven Sievert, QCS
 - a. Review of Current Auditing Schedules attached
 - b. Samples Unknown Program
 - i. Late Submission of Data Steven Sievert
 - ii. Data Entry Errors Steven Sievert
 - iii. 2016 Unknowns Schedule Steven Sievert
 - iv. Samples Unknown Program revision plans
 - c. Potential MUN tolerances for Samples Unknown Program
 - d. Laboratory Manager and Technician Training
 - e. Questions/revisions on current Auditing Procedures for Laboratories
- 7. New Business
 - а.
 - b.
- 8. Adjourn

Laboratory Advisory Committee (LAC) Meeting September 8, 2014 Eastern Laboratory Services, Medina, OH

- 1. LAC meeting called to order by Chairman, Jere High at 10:10 a.m.
- 2. The agenda was approved as distributed.
- 3. Hearing no opposition from attendees, Jere High appointed Steven Sievert to take minutes for the 2014 meeting.
- 4. It was moved, seconded and passed to approved the minutes from the 2013 LAC meeting as presented and read at the meeting.
- 5. Steven Sievert, QCS Program Manager, provided a QC Program update (attached to minutes)
 - a. Current auditing schedule distributed and discussed.
 - b. Review of procedural steps following on-site laboratory audits.
 - c. Report on the late data submission by laboratories.
 - d. Discussions on data entry errors in the Samples Unknown program.
 - e. Presentation of draft protocol for new instruments and components.
 - f. Update on MUN program.
- 6. There was an extended discussion on the draft 'Approval Protocol for New Laboratory Instrument(s) and Component(s). This discussion focused on the need to balance the laboratory's desire to bring the new instrument(s) on-line as soon as possible and the need to provide an assurance of accurate results being submitted to the Cooperator Database. While the LAC members in attendance agreed on the provisions for notification, training, and routine QC procedures in the draft protocol, there were differing viewpoints on the demonstration of acceptable instrument performance. It was suggested that Steven Sievert incorporate suggestions from the floor into a revised proposal and present this revision during the afternoon session of the NALMA meeting.
- 7. Steven Sievert offered background on the MUN program and the need to develop tolerances for MUN program. There are no clearly defined tolerances for accuracy or repeatability in the audit guidelines. Further, there have been requests from laboratories on guidance on MUN performance and from outside parties on the data quality. Finally, it was agreed that this would enhance the value of the MUN program. It was agreed that a proposal should be developed and presented during the 2015 LAC meeting. John Rhoads, ELS, and Julee O'Reilly, DHI Cooperative Inc., volunteered to work with Steven Sievert on development of a MUN program proposal. Additional expertise may be solicited in this work area and Steven Sievert will present a draft proposal at the next LAC meeting.
- 8. There were no other changes to the *Auditing Procedures for Laboratories* proposed during the meeting.
- 9. Jere High, LAC Chair, was up for election and indicated that he would not be running for another term. Jere was thanked for his 12 years of service to the Laboratory Advisory Committee as Chair.
- 10. John Rhoads, Eastern Laboratory Services, was elected to the position of LAC Chair for a two-year term by unanimous declaration.
- 11. Meeting was recessed at 11:45 a.m.
- 12. Meeting was reconvened at 3:50 p.m.

Laboratory Advisory Committee (LAC) Meeting September 14, 2015 Embassy Suites Hotel, Syracuse, NY

- 1. LAC meeting called to order by Chairman John Rhoads at 8:35 a.m.
- 2. The agenda was approved as distributed.
- 3. Hearing no opposition from attendees, John Rhoads appointed Steven Sievert to take minutes for the 2015 meeting.
- 4. It was moved, seconded and passed to approve the minutes from the 2014 LAC meeting as presented.
- 5. Steven Sievert, QCS Program Manager, provided a QC Program update (attached to minutes)
 - a. Current auditing schedule distributed and discussed.
 - b. 2016 Samples Unknown schedules for component and ELISA laboratories were distributed.
 - c. Update on the Samples Unknown programming.
 - d. Review of procedural steps following on-site laboratory audits.
 - e. Report on the late data submission by laboratories.
 - f. Discussions on data entry errors in the Samples Unknown program.
 - g. Review of the approved protocol for new instruments and components.
 - h. Update on MUN program.
- 6. During the 2014 meeting, Steven Sievert reported that here are no clearly defined tolerances for accuracy or repeatability for MUN in the audit guidelines. Further, there have been requests from laboratories on guidance on MUN performance and from outside parties on the data quality. Finally, it was agreed that this would enhance the value of the MUN program.
 - a. A subcommittee of John Rhoads, ELS, and Julee O'Reilly, DHI Cooperative Inc., volunteered to work with Steven Sievert on development of a MUN program proposal, however this work was not completed prior to the 2015 LAC meeting. Carol Decker, NorthStar Cooperative Wisconsin, volunteered to join the MUN subcommittee. (Note Muril Niebuhr, Minnesota DHIA Zumbrota, also volunteered to join the MUN subcommittee after the meeting was adjourned). Additional expertise may be solicited in this work area and Steven Sievert will present a draft proposal at the 2016 LAC meeting.
 - b. Discussion on the suitability of both the unknown and calibration sets for MUN was brought to the floor. Dave Barbano, Cornell University, also shared with the group the work by the MMA using an enzymatic colorimetric method as a replacement for CL-10 as a reference method for MUN. The MUN subcommittee was encouraged to consider these comments in their proposal.
- 7. There were no other changes to the *Auditing Procedures for Laboratories* proposed during the meeting.
- 8. The meeting was adjourned at 9:32 a.m.

Recorded by:

Steven Sievert QC Program Manager Quality Certification Services Inc.

- 13. Steven Sievert distributed a revised protocol for new instruments and thanked laboratory managers for their input. This revision (attached to minutes) included two options for providing assurance of instrument performance. It was moved, seconded, and passed by the LAC to send the revised proposal to the Audit Review Committee and subsequently to the Council on Dairy Cattle Breeding for review and addition to the Auditing Procedures for Laboratories with a target effective date of January 1, 2015.
- 14. The meeting was adjourned at 4:00 p.m.

Recorded by:

Steven Sievert QC Program Manager Quality Certification Services Inc. Laboratories are subject to biennial, on-site audits. Below is a schedule of target months for the on-site audits scheduled to occur during even-numbered years.

January	Dairy Lab Services
	Stearns DHIA Central Laboratory
	Minnesota DHIA - Zumbrota
February	
5	
	Central Counties DHIA
	Southern Counties DHIA
March	
	Lancaster DHIA
	United Federation of DHIAs
	lstein de México, Santiago de Querétaro, Querétaro, México
	Alpura, Edo. de México, México, México
	Inledesa (Alpura), Cd. Delicias, Chihuahua, México
	Integrated DHI – Dimmitt
	Circle H Headquarters LLC

Laboratories are subject to biennial, on-site audits. Below is a schedule of target months for the on-site audits scheduled to occur during odd-numbered years.

	Dodge County DHIA Eastern Wisconsin DHIC Gallenberger Dairy Records NorthStar Cooperative DHI Services – Wisconsin
	AgSource Cooperative Services/CRI – Menomonie Laboratory Barron – Washburn DHIC Marathon County DHIA
	Northwest Labs, LLC High Desert Dairy Lab Rocky Mountain DHIA Arizona DHIA
December	

ELISA Proficiency Program 2016 Samples Unknown Schedule

<u>Trial Number</u>	Date Samples Shipped to Labs	Due Date for Results
173	January 11	January 29
174	February 8	February 29
175	March 14	March 31
176	April 11	April 29
177	May 9	May 31
178	June 13	June 30
179	July 11	July 29
180	August 8	August 31
181	September 19	September 30
182	October 10	October 31
183	November 14	November 30
184	December 12	December 30

Note: The 2016 NVSL Johne's trial dates have not been determined. A revised schedule will be distributed once the trial dates are finalized. Labs will receive their samples that month from NVSL and report results on both the NVSL and the QCS ELISA reporting sites.

DHI Component Laboratories -

2016 Samples Unknown Schedule

Batch Number	Week Starting	<u>g</u>
218	January 11	
219	February 8	
220	March 14	One week later due to National DHIA 51 st Annual Meeting March 8-10, 2016
221	April 11	
222	May 9	
223	June 13	
224	July 11	
225	August 8	
226	September 19	9
227	October 10	
228	November 14	ļ
229	December 12	

QCS Laboratory Program Update

Steven J. Sievert Manager, Quality Certification Services, Inc. Technical Director, National DHIA

Lab Advisory Committee Meeting September 14, 2015 Housekeeping

General Auditing Guidelines

- Service providers are required to notify the auditor of:
 - □ Changes in business name, address, phone, email, contacts
 - Changes in authorized personnel i.e. lab managers, contact person
 - □ Changes in equipment/instrumentation
- Notification within 30 days of change.
- Changes should be sent to QCS Program Manager Steven Sievert, not to the Lab Auditor.
- Assures accuracy in billing for laboratory fees and samples unknown component fees, website listings, and monitoring instrument performance.

Renaming of Instruments/Line Identification

- Notify QCS Program Manager (Steven) of desire to rename instrument:
 - □ Has to be done by QCS staff to merge history files.
 - □ If you only change the name on the Samples Unknown website, it will create a new instrument and start a new history file.
 - Please make changes prior to Samples Unknown test week, not during the week. Process takes time and QCS Manager is not always available depending on audit schedule.
 - Current program does not allow certain characters to be used in naming such as #, &, @, (), {}, or [].
- QCS will link the history files and email confirmation to lab.
- Enter data as normal during the next Samples Unknown trial.

Notification of Certification Reports

- QCS moved Samples Unknown database to new server in late June.
 - □ All unknowns data and reports are secure.
 - Compatibility of new server software with old programming with emailing of certification reports is an issue. The email creates certification report with data through June 2015.

- Please login into Samples Unknown site to retrieve your certification report.
- Select the correct batch from the dropdown list of monthly trials

On-Site Audits

Laboratory Auditing Schedule

Auditing/centering month schedule is periodically updated to reflect the current DHI laboratories.

- Updates are published on QCS website when changes occur.
- QCS works to have a balanced audit schedule for Paul Sauvé.
 - 23 labs in even-numbered years
 - 22 labs in odd-numbered years
 - Current centering month schedules in handout
- One lab closing and one new laboratory starting to analyze DHI samples since last LAC meeting.

Availability of Samples During Audit

- Laboratory <u>MUST</u> have samples to run the day of the on-site audit. If there are no samples available, the on-site audit will be terminated and will have to be rescheduled.
- Laboratory is responsible for all costs (time and travel) associated with the subsequent audit.
- <u>Will</u> negatively affect your certification status (i.e. Provisional).
- Note that the certification expiration date cannot be extended and the auditor's schedule may push subsequent audit date past the existing expiration date. The net result is decertification of the laboratory until the on-site audit can be completed. Decertified laboratories may not send data to the CDCB.

Noncompliant Items from Previous Audit

It is normal that certain noncompliant items identified during the course of the onsite audit are designated with a completion timeline of 'by the next audit'

- If a lab fails to address these noncompliant items by the subsequent audit, the laboratory will have its certification status changed to 'Conditional.'
- May bypass the 'Conditional' status if additional serious noncompliant issues are identified during the course of the subsequent audit.
- The auditor will recommend to QCS a time-frame for completion that will not exceed six (6) months.
- Failure to address these items within the time-frame designated will result in the laboratory certification status to be changed to 'Provisional.' If a laboratory continues to fail to address the noted noncompliant issues, the laboratory may be decertified.

After your lab audit...

- 1. Paul Sauvé will provide a summary list to lab with noncompliant items, usually before leaving the laboratory.
- 2. Paul Sauvé will send the summary, full audit report, and a certification status recommendation to QCS for review. The lab auditor does not determine certification status.
- 3. QCS will review the recommendation along with payment history, on-time submission requirements, and other compliance factors.
- 4. QCS will prepare a summary letter and full report and will send to the laboratory manager, general manager and board president (as applicable).
- 5. QCS will update the website with certification status.
- 6. QCS will place follow-up items on calendar based on timetable (30 days, 6 months, etc.) as stated in the audit report.
- 7. QCS and Paul will work cooperatively to secure required follow-up if a laboratory does not respond in a timely fashion.
- 8. Failure to respond, either partly or fully, will negatively affect your certification status.

Samples Unknown

Review of Monthly Samples Unknown Results

- 1. Paul Sauvé provides QCS with a list of labs not satisfying the guidelines and recommendation each month:
 - Immediate contact with laboratory
 - Watch closely next month
 - Out of tolerance, but issue has been addressed
- 2. QCS sends an email to each lab listed as immediate contact requesting a response within 7 days. This response should be sent to both Paul Sauvé and QCS.
- 3. QCS and Paul Sauvé work cooperatively to secure required followup if laboratory does not respond in a timely fashion.
- 4. Failure to respond <u>will</u> negatively affect your certification status.

Review of Monthly Samples Unknown Results

During the analysis of the following comments regarding

QCS Samples Unknown trial, lab auditor Paul Sauvé made the DHIA laboratory.

1	Fat	MD out in two of last three	Recommend contact with
		trials. July MD=.079.	lab regarding this issue.

Please review internally and then provide feedbacks and steps taken to correct these issues on or before

Please include both Paul and myself on this communication.

Best regards,

Steven

Steven Sievert

Manager, Quality Certification Services Technical Director, National DHIA & DHIA Services

<u>Samples Unknown – Data Entry Errors</u>

- Huge increase in number of data entry errors in Samples Unknown:
 - Transpositions 3.18 instead of 3.81
 - Minor data entry errors 4.30 instead of 3.30
 - Switching rows & results i.e. protein & MUN switched
 - Major data entry errors entered the wrong data (previous months data, total protein instead of true protein, or wrong instrument)
- Paul and Steven correct obvious errors but should we?
 - Labs are responsible for the data they submit
 - If QCS does not correct mistakes, the all instrument averages are affected.
- Batch entry confirmation report is available each lab should print and double check the data entered. It is your proof of submission.
- Corrected data is late data as agreed upon during 2013 LAC Meeting

Batch Entry Confirmation Report

Services Inc.

<u>Samples Unknown – Data Entry Errors</u>

During the review of the July 2014 Samples Unknown trial, Paul Sauvé noted the following data entry error for DHIA.

In reviewing the July samples unknown, I discovered a data entry error in your results –
 L2, FAT, Sample #11 changed from 3.43 to 4.43.

Previous data entry errors during the last twelve months for DHIA have been noted in the following samples unknown trials:

- May 2014
- September 2013
- August 2013

Late Entry of Samples Unknown Results

- Laboratory Guidelines changed in 2009 any lab submitting data late (unexcused) twice or more in a 12 month period will have certification status changed to provisional.
 - 6 Labs have been made provisional since implementation
 - 17 labs have 'one strike' today

August 2015

- 1 late lab definite improvement during the last 12 months
- Two labs with data entry errors

Late Entry of Samples Unknown Results

What is Valid?

- <u>Acceptable Reasons</u>
 - Instrument problems
 - □ Waiting on parts and/or manufacturer technician to arrive
 - Samples arrived spilled or out of condition
 - Samples arrived late
- <u>Unacceptable Reasons</u>
 - Vacation
 - Forgot the samples were in the cooler
 - Did not get around to running the samples
 - **Gold Forgot to enter the results**
 - Ran out of time on Friday

Samples Unknown Programming Plans

- QCS is working on a rewrite on the Samples Unknown Website with focus on:
 - Data entry compatibility with newer browsers as well as tablets and other touch screen devices
 - Ability to add new components
 BOHB, casein, FFA, lactose, etc.
 - Address instrument naming concerns
 - Add additional ELISA testing programs PAG, BLV, BVD
 - Internal data handling and editing needs
 - Exploring options for interface for result submission
 - Challenges different instruments with different output and labs handle unknowns differently

Samples Unknown–Batch Comparison Report

Allows you to compare performance with other labs

- Only know the identity of your lab
- Identify trends by looking at all instruments in your lab
- Build value in DHI programs and use as sales tool

Adding New Instruments & Components

Procedure for New Instruments

- Notify QCS Program Manager of new instrument:
 - Make, Model and In-Service Date
 - Components to be analyzed
 - Instrument to be taken off-line (if applicable)
- Laboratory adds instrument on Samples Unknown website. The Samples Unknown website will create a new history file for the instrument.
- Documentation Required
 - Manufacturer training is required and subsequent documentation sent to the QCS Program Manager
 - Analyze one set of 'special' unknowns with results sent to QC Program Manager and Paul Sauvé.
 - Perform appropriate and routine QC checks with calibration checks, hourlies and dailies for the first three weeks of operation with results sent to QC Program Manager and Paul Sauvé.

Observations from New Instrument Start-Ups

- Issues noted with new instruments
 - Calibration mistakes usually 2nd or 3rd week of full operation
 Calibrated to total protein vs. true protein
 - Errors in calibration
 - Sample handling issues related to new instrument capability
 Sample heating shorter time in water bath
 More samples in water bath and water does not reach proper temperature
 - Solution/reagent preparation
 - Environmental humidity, temperature, vents/fans
 - Software/data flow issues

Procedure for New Components

- Same notification to QC Program Manager and documentation requirements
- Applies to existing instruments when a lab begins analyzing a new component

 Generic language that would apply to additional components if deemed valuable in the marketplace
 BOHB, casein, FFA, lactose, etc.

Set up the new/additional component in the Samples Unknown system

Meet the same performance criteria as with all instruments submitting data to the Industry Cooperator Database

MUN Update

MUN Tolerances

- Multiple requests to define tolerances for MUN in the Samples Unknown program
 - Labs with new instruments desire direction
 - Third parties using MUN data would like an assurance of accuracy
 - Support and marketing of MUN program
- Considerations when defining tolerances
 - Results from all instruments have improved
 - As herds use the same lab for MUN over time to measure changes, repeatability may have to have tighter tolerance than single cow accuracy
 - Can our tolerances be tighter than the instrument capability?
 - Our sample set needs to be in the range of all instruments
 - <u>The variation in the lab has to be smaller than the variation</u>
 <u>between cows</u>

Laboratory Training Modules

Laboratory Manager & Technician Training

- Both Paul and QCS have identified a strong need to improve and standardize training for DHI laboratory managers and technicians.
- Discussion on development of online training modules for various components (i.e. purging efficiency) of laboratory quality control.
 - Who, what, why, how, timing
 - Calculations, forms, record keeping
 - Troubleshooting
- Designed for both laboratory managers and employees
- Modules would be designed to be approximately 15 minutes with quiz
- Would help meet the training requirements in Auditing Procedures for Laboratories

QCS SIEVERT-LAC-09.14.2015

QCS SIEVERT-LAC-09.14.2015

Paperless Lab Technologies

NALMA, September 14, 2015 Syracuse, New York

Paul Sauvé, CLS

DHI Laboratory Audits:

Strengths

- Sample processing and analysis
- Equipment maintenance
- Real-time quality control
- Instrument calibration

Weaknesses:

- Document management
- Records management
- Troubleshooting (Why?)

Common question:

Can we keep electronic records or do we need to keep hard copies?

From the CDCB Auditing Guidelines:

Record Keeping Systems Calibration checks and maintenance <u>records may be documented in the</u> form of a computerized spreadsheet, manual listing, or other organized <u>system</u>. If manual listings are used, results should be recorded in ink.

A better question:

Should we keep electronic records?

YES!

Common Lab Documents:

- Quality Management System (QMS)
- Procedures
 - Sample receipt
 - Sample processing
 - *Equipment maintenance*
 - Staff training
 - Quality control
- Lists (procedures, forms, equipment, suppliers, inventory, staff, customers)
- Schedules (sample receipt, staffing, maintenance)
- Forms
 - Paper (worksheets)
 - Electronic (templates)
- Completed forms become <u>Records</u> (test results, QC, HR, etc.)
- Reports

Quality Management System:

A Quality Management System (QMS) is the full set of processes put in place by an organization to ensure that quality objectives are met and that customer requirements are satisfied.

It consists of detailed, up-to-date policies and procedures and defines a formal system for maintaining associated documents, records and reports.

It is fully auditable both internally by management and staff and externally by recognized accreditation or certification agencies.

Procedures:

Procedures ensure that all staff are performing key functions correctly.

They are critical to appropriate training of laboratory staff.

They can also be used to demonstrate competence to clients and to auditors.

SOP #132	Hourly Zero Checks and Zero Adjustments (IR)				
REVISION #002		February 15, 2015			

Scope:

Hourly zero checks and/or adjustments are performed in order to monitor the stability of infrared analyzers on an hourly basis during routine testing of all DHI client samples.

Responsibility:

All Instrument Operators are responsible for performing the hourly zero checks in accordance with the following procedure.

- PAGE 1 OF 2 -

SOP #132	Hourly Zero Checks and Zero Adjustments (IR)				
REVISION #002		February 15, 2015			

Procedure:

- 1. Sealed vials of zero solution (0.1% TX-100 ref. SOP #119) are held in the 42C waterbaths until needed.
- 2. Immediately following the hourly pilot sample check (ref. SOP #131), one vial of zero solution is tested manually three times in succession.
- 3. The second two fat and protein results are averaged and the values are recorded in the appropriate fields on Form #17C.
- 4. If drift for either component exceeds $\pm 0.03\%$, the zero is reset and the adjustment is noted by checking the appropriate box on Form #17C.
- 5. If drift for either component exceeds +/- 0.06%, testing is discontinued and the Lab Manager or Shift Supervisor is consulted.

- PAGE 2 OF 2 -

L #003	Master List of Standard Operating Procedures				
Page 1 of 3		August 25, 2015			

SOP	TITLE	REVISION
L001	Start-up, Foss FT+	March 10, 2015
L002	Repeatability Check, Foss FT+	July 13, 2014
L003	Zero Check, Foss FT+	April 2, 2014
L004	Pilot Sample Check, Foss FT+	February 27, 2013
L005	Calibration Check, Foss FT+	December 11, 2013
L006	Calibration Adjustment, Foss FT+	December 11, 2013
L007	Shut-down, Foss FT+	June 4, 2014
L008	Start-up, Foss FC	November 24,2014
L009	Repeatability Check, Foss FC	March 30, 2013
L010	Zero Check, Foss FC	August 21, 2015

Schedules:

Typical DHI laboratories maintain schedules of numerous activities:

- Staffing
- Sample Receipt
- Special Testing (Johnes, Leukosis, Pregnancy, etc)
- Equipment Maintenance
- Quality Control
- Reagent Preparation
- Inventory Receipt
- Receipt and Testing of Unknown Samples

Forms:

Forms provide a standardized means of recording critical information. They ensure that all necessary data generated in the procedure is appropriately recorded.

Forms can either be hard copy documents (worksheets) or electronic documents (templates).

The laboratory should maintain a standard list of all current forms (worksheets or electronic templates) in use.

Completed forms become *records*.

XY	Z DH	IA	Da	aily IR	Form #17C					
Date: Line:				Operator: Supervisor:						
Target	t Values	s: Fat		_ (+/((+/04%)					
Pilots (+/04		04%)	%) Zeros (+/03%)							
Time	Fat	Pro.	Status	Fat	Pro.	Reset	Comments			
			[] IN [] OUT			[] YES [] NO				
			[] IN [] OUT			[] YES [] NO				
			[] IN [] OUT			[] YES [] NO				
			[] IN [] OUT			[] YES [] NO				
			[] IN [] OUT			[] YES [] NO				

XYZ DHIA				aily IR	Works	Form #17C		
Date: Line:	Ben	<u>ch 15, 0:</u> tley #1		Operator: Supervisor:				
Target Values: Fat: <u>3.50</u> (+/04%) Protein: <u>3.15</u> (+/04%)								
	Pilots (+/04%)			Zeros (+/03%)				
Time	Fat	Pro.	Status	Fat	Pro.	Reset	Comments	
8:30	3.50	3.16	∦⁄IN [] OUT	0.02	0.00	[] YES ∦NO	OK	
9:28	3.52	3.10	[] IN J/OUT	-0.01	-0.07	∦ YES [] NO	Supervisor contacted. Repair documented in log.	
10:32	3.48	3.15	[]/IN [] OUT	0.00	0.01	[] YES	OK	
11:25	3.49	3.14	∦⁄IN [] OUT	0.02	-0.01	[] YES ∦∕NO	OK	
11:45	3.50	3.16	∭.IN [] OUT	0.00	0.01	[] YES ∦NO	End of shift.	

Reports:

DHI laboratories develop and maintain various types of reports:

- Internal
 - Workplace incidents / accidents
 - Staff performance reviews
 - *Etc.*
- External
 - Test Results
 - Sample condition
 - Annual business
 - *Etc.*

Technician Training – Associated Lab Documents:

- Quality Management System (QMS)
 - *Job descriptions, requirements*
 - *Policies (training, confidentiality, continuing education)*
 - Hiring policies and procedures (salaries, benefits)
- Procedures
 - New Technician training
 - On-going training
- Lists
 - Staff
 - Training activities and authorizations
- Schedules
 - Training
 - Staff meetings
 - Off-site conference and workshops

Technician Training – Associated Lab Documents:

- Forms
 - Training checklist
- Records
 - Completed training checklists
- *Reports*
 - Incident reports
 - Performance reviews

F #019	New Technician Training Record Page 1 of 3						
Technicia	n: B	. Smith	Date Hired: June 12, 2015				
Activity		Related SOP's	By:	Date(s):	Notes		
Sample receipt / log-	in	002, 003, 004	JPS	Jun 13, 15	-authorized		
Inst. start-up / shut-d	own	006, 008	JPS	Jun 14, 15	-authorized		
Sample analysis		009	JPS	Jun 16, 15	-authorized		
Routine QC checks		010 to 019	DMB Jun 17-21, 15		-authorized		
Routine maintenance		021 to 025			-scheduled for Nov, 2015		
Calibration checks		027, 029	JPS	Aug 4-7, 15	-authorized		
Calibration adjustments		028, 030		Aug 4-7, 15	-more training needed, not authorized		
Johnes testing		045	JPS	Sep 9, 15	-authorized		
Pregnancy testing		049					
Preparation of reagents		051, 052, 053	DMB	Jul 21, 15	-authorized		
Computer backups		074	IMK	Sep 11, 15	-authorized		

Retention Time (Lab Records)

According to CDCB Guidelines:

"Documentation of all calibration checks and maintenance records should be maintained for a minimum of two years."

Is this sufficient?

Doesn't it make more sense to keep this information for the full life of the analyzer?

Why isn't the specified retention period longer?

Storage Capacity:

A typical new pc (<\$500) is equipped with 1 terabyte of on-board storage.

- average 2000 characters on a page
- Average 2 bytes / character
- Approximate storage capacity: 250 million pages of data

Size of a storage facility to keep the same amount of information in hardcopy:

- 150,000 square feet
- or...about 100 typical DHI facilities

Quantity of documents / lab records from a typical DHI laboratory that can be stored on a 1 terabyte hard drive:

~ 3000 years

(A very rough estimate but you get the point!)

Common Lab Documents:

- Quality Management System (QMS)
- Procedures
- Lists
- Schedules
- Forms
- *Records*
- *Reports*

All of these items can be developed, revised, and stored electronically.

- *Reduction of office supplies (paper, ink cartridges, file folders, boxes, filing cabinets, etc.)*
- Elimination of storage space
- Elimination of retention times for critical lab records
- Preservation of data (Paper records can be lost, damaged or destroyed. Electronic records can be backed up in multiple locations.)
- More organized records.

- More complete records
- More uniform records (Encourage staff to conduct procedures in a systematic fashion.)
- Searchable records
- *Better security (password protection, limited access)*
- Increased traceability (samples, staff, test line, reagent batches, etc.)

- *Real-time QC (Checks requiring calculations are completed immediately. Problems are identified before test results are compromised.)*
- Increased accuracy (elimination of transcription or calculation errors)
- Increased legibility (Not everyone has excellent penmanship.)
- *Greater flexibility (i.e. adding a test parameter, BHB)*

- Ensure currency (A printed version of a procedure may be out of date. The official electronic copy is always current.)
- *Remote access (Digital records can be accessed securely from anywhere.)*
- Increased functionality (Digital records can be used to identify trends, generate control charts, etc.)
- **GREENER**

Advantages of Maintaining Paper Records:

Hardware Solutions:

- *Direct use of line pc (concurrent windows)*
- Secondary pc(s) at the test lines
- Technician tablets
- Auto-capture via programmed QC routines
 - *Bar-coded or RF ID'd samples (routine and/or QC)*
 - Manual selection of QC routines by Technicians

Software Solutions:

Commercial DMS, LIMS, and Custom Systems

Document Management System:

A document management system (DMS) is used to track, manage and store electronic documents.

Most are capable of keeping a record of the various versions created and modified by different users (history tracking).

There are numerous Document Management Systems on the market.

ZOHO

INTELE^X

Software Solutions:

Laboratory Information Management System:

A Laboratory Information Management System (LIMS) is software that allows you to manage samples, quality control and associated data.

There are numerous Laboratory Information Management Systems on the market.

STARLIMS

Custom Systems:

In most cases, Managers of typical DHI laboratories will chose to develop custom systems for document control and for maintenance of lab records.

Documents:

- Document files i.e. Microsoft Word TM
- Ideally these are linked to master lists and to the overall QMS

Lab Forms:

- Spreadsheet templates i.e. Microsoft Excel TM
- Ideally these are linked to the master lists and to the overall QCS

Custom Systems:

Records:

- Lab records will be made up of completed lab forms.
- Separate digital files will be used for specific data sets:
 - Date
 - Technician
 - Line
 - Etc.
- Digital files will be stored indefinitely in an organized, searchable and retrievable manner.
- Digital data will be backed up regularly in multiple formats and locations. Real-time backups are best.

Interface:

How does information get from the user to the digital record?

For example – QC results from daily start-up checks or hourly control sample checks:

- Data entry (keying)
 - *Time consuming (but no more than writing the information on paper)*
 - Possibility of transcription errors (as with paper)
 - Real-time review and assessment of instrument status
 - *Requires Technician to pay attention to instrument status*
- Direct upload from machine software
 - *Requires compatible input from manufacturer's software*
 - Failures can go unnoticed (without appropriate flags)
 - Rapid, less down-time
 - Can be integrated with bar-code or RF ID samples

Data Storage and Protection:

- Network backups
- Mirrored hard drives
- *External hard drives (useful for off-site backups)*
- Other media (cd's, USB sticks)
- Web-based (cloud) services (remote access!!!)

Considerations:

- Real-time (live) backups are preferred over scheduled backups
- Multiple sources are required, Every storage device (media) will eventually fail
- Off-site backups are required (cloud, removable media)

Organization of Digital Records:

Digital records can also be organized or disorganized.

Word	Excel	PowerPoint	Internet Explorer	Microsoft Outlook 2010
Lotus 1-2-3	Adobe Acrobat	Dream Weaver	Business Plan Pro (v. 12)	Sales and Marketi
BaseCamp	QuickTime Player	Skype	iTunes	Kobo
Ţ		H 264		

Mobile Malwareby... PlayBack RecordFile Connect Anti-Malw...

August 2015 August 2015 QP Trial PIL Trial

Windows Recycle Bin Explorer

Data Synch CLS Network

Archive

ISO_FDIS_1... - Statistical...

8

Lab QC

7

Q

 	~~	
	•== •	?

▲ 📲 🛱 .ਗ 🌵 3:18 PM 27/08/2015

Organize 🔻	Include in library 🔻	Share with 🔻	Burn	New folder	
Name	<u>^</u>	Date mod	lified	Туре	Size
🔊 2013.xlsx		27/08/201	5 3:11 PM	Microsoft Excel W	9 KB
🖄 2015.xlsx		27/08/201	5 3:11 PM	Microsoft Excel W	9 KB
📳 Cal June 20	014.xlsx	27/08/201	5 3:11 PM	Microsoft Excel W	9 KB
🔁 Calibration	Certificate.pdf	27/08/201	5 3:10 PM	Adobe Acrobat D	82 KB
🔁 Calibration	n.pdf	27/08/201	5 3:10 PM	Adobe Acrobat D	82 KB
🕙 Calibration	n.xlsx	27/08/201	5 3:11 PM	Microsoft Excel W	9 KB
🖳 Cell Count	.docx	27/08/201	5 3:08 PM	Microsoft Word D	13 KB
🖳 Controls.xl	sx	27/08/201	5 3:12 PM	Microsoft Excel W	9 KB
🖳 DHIA.docx	:	27/08/201	5 3:08 PM	Microsoft Word D	13 KB
👜 Equipment	t Maintenance 2013.docx	27/08/201	5 3:05 PM	Microsoft Word D	13 KB
👜 Equipment	t Maintenance Line 1.docx	27/08/201	5 3:05 PM	Microsoft Word D	13 KB
🖳 Equipment	t Maintenance Line 2.docx	27/08/201	.5 3:06 PM	Microsoft Word D	13 KB
👜 Equipment	t Maintenance old.docx	27/08/201	.5 3:06 PM	Microsoft Word D	13 KB
👜 Equipment	t Maintenance Revised.doo	x 27/08/201	.5 3:06 PM	Microsoft Word D	13 KB
🖳 Equipment	t Maintenance.docx	27/08/201	5 3:05 PM	Microsoft Word D	13 KB
🖳 Foss 001.de	ocx	27/08/201	.5 3:08 PM	Microsoft Word D	13 KB
🖷 Foss 2014.a	docx	27/08/201	5 3:08 PM	Microsoft Word D	13 KB
🖳 Foss June.d		27/08/201	.5 3:08 PM	Microsoft Word D	13 KB
🔁 Foss Servic	e.pdf	27/08/201	5 3:10 PM	Adobe Acrobat D	82 KB
🖳 George.do	cx	27/08/201	5 3:06 PM	Microsoft Word D	13 KB
📳 Happy Nev	w Year.xlsx	27/08/201	5 3:13 PM	Microsoft Excel W	9 KB
Help.docx		27/08/201	.5 3:08 PM	Microsoft Word D	13 KB
🔄 Homogeni	ization 2014.xlsx	27/08/201	5 3:12 PM	Microsoft Excel W	9 KB
🔛 Homogeni	ization April 2015.xlsx	27/08/201	.5 3:12 PM	Microsoft Excel W	9 KB
	ization Line 2.xlsx	27/08/201	.5 3:12 PM	Microsoft Excel W	9 KB
🖳 June 2015.			5 3:07 PM	Microsoft Word D	13 KB
🖳 Master List			.5 3:06 PM	Microsoft Word D	13 KB
Master List			5 3:06 PM	Microsoft Word D	13 KB
Outgoing.			.5 3:07 PM	Microsoft Word D	13 KB
Pilot Samp			5 3:12 PM	Microsoft Excel W	9 KB
Pilot Samp	les.xlsx		.5 3:11 PM	Microsoft Excel W	9 KB
QCS.docx			.5 3:08 PM	Microsoft Word D	13 KB
SCC.docx			.5 3:08 PM	Microsoft Word D	13 KB
Service No	•		.5 3:10 PM	Adobe Acrobat D	82 KB
SOPs.docx			5 3:06 PM	Microsoft Word D	13 KB
Spoiled Sa			.5 3:07 PM	Microsoft Word D	13 KB
🖳 Staff Traini	-		.5 3:07 PM	Microsoft Word D	13 KB
Thermome			5 3:10 PM	Adobe Acrobat D	82 KB
Training M	-		.5 3:07 PM	Microsoft Word D	13 KB
🖷 What The I	Hell Is In This File.docx	27/08/201	.5 3:07 PM	Microsoft Word D	13 KB

🬔 🔛 🔮 🌾 Sticky Notes

Word	Excel	PowerPoint	Internet Explorer	C
.otus 1-2-3	Adobe Acrobat	Dream Weaver	Business Plan Pro (v. 12)	
BaseCamp	QuickTime Player	Skype	I Iunes	
P				

Lotu

Bas

Mobile

Connect

7 PlayBack

Malwareby... Anti-Malw...

Microsoft

Ð

Sales and

Marketi...

ak

Kobo

Outlook 2010

August 2015 August 2015 QP Trial PIL Trial

Recycle Bin Windows Explorer

Holding My Tank Documents

To File To Print

Archive

ISO_FDIS_1... - Statistical...

e

Quality Control

-

e

QC 2015

Sticky Notes

▲ 📲 🛱 📶 ♦ 3:44 PM 27/08/2015

e

Purging Efficiency Checks Line 1

Line 1

Repeatability Checks Line 1

Sticky Notes

09

e

Zero Checks Line 1

💭 🗢 📕 🕨 Lab QC 🕨 Quality Control 🕨 QC 2015 🕨 01 Jan 2015 🕨 Line 1 🕨 Calibration Checks Line 1

NG -

_ 0 ×

2

G

Jan 2, 2015.xlsx

Jan 9, 2015.xlsx

Jan 16, 2015.xlsx

Jan 23, 2015.xlsx

Jan 30, 2015.xlsx

Calibration Check...

Image: New Years Image: New Years <td< th=""><th>🚽 🤊 •</th><th>(~ - =</th><th></th><th></th><th></th><th></th><th>Ji</th><th>an 2, 2015.xlsx.xls</th><th>[Compatibilit</th><th>y Mode] - Microsof</th><th>t Excel</th><th></th><th></th><th></th><th></th><th></th><th></th><th>7 -</th></td<>	🚽 🤊 •	(~ - =					Ji	an 2, 2015.xlsx.xls	[Compatibilit	y Mode] - Microsof	t Excel							7 -
Carbon Difference for the form Carbon	ile H	lome	Insert Pa	age Layout	Formulas	Data Revie	w View	1									_ ∧ 🕜	- 6
Compose Part Line Compose Comp			Times N	lew Roman 👻	16 · A A	· = = =	\$\$/~~	🚽 Wrap Text	Gene	ral 🔹	≤₹			←	*		· 🛜 í	ñ
Citebool Fort Citebool Description System Cells Eating A1 * K VZ DHA X L M N O P C A B C D E F G H I J K L M N O P C CVZ DHA Infrared Calibration Report Infrared Calibration Report 0/01 Bias:	ct o		B I	<u>u</u> -	- <u>A</u> - <u>A</u> -			🔤 Merge & Ce	nter - \$ -	% , €.0 .00		al Format	Cell		elete Format		Sort & Fi	ind &
A1 + S2 X2 DHA A B C D E F G H I J K L M N O P C Date Q2 Jan 15 Infrared Calibration Report Old Stope 1000 Old Bas Stope Change 1054 Basc Change J K L M N O P C Component Fat Old Stope 1001 Stope Change 1054 Basc Change Stope Change 1054 Basc Change Infrared Calibration Report Stope Change 1054 Basc Change Infrared Calibration Report Sample Reference R Difference Sample Adj. R Difference Comments 1 3.300 3.300 0.010 1 3.300 4.020 -											Formatting		r Styles *	*				lect *
A B C D E F G H I J K L M N O P C Date: 02.4an-15 Infrared Calibration Report 0/d Blas: 1.000 Stope Change: 1.054 Infrared Calibration Report						_						,						
CY_Z DHI Infrared Calibration Report Sage Change: 1054 Dete: 0/d Sloge: 1000 Sloge Change: 1054 Dete: 0/d Sloge: 1000 Sloge Change: 1054 Batch: E.8/273						E	F	G	Н		J	K	L	M	N	0	Р	G
Date: 02-Jan-15 instrument: 000 Stope: Porticit: 1.000 Porticit: Stope Change: -0.191 1.054 Bias Change: -0.191 Operator: Poil New Stope: 1.054 New Stope: Installed (Y or N) New Stope: Installed (Y or N) New Stope: Installed (Y or N) New Stope: Sample Person: R Difference Installed (Y or N) New Stope: Installed (Y or N) 2 3.990 3.990 0.000 2 3.991 0.021 3 3.570 3.590 0.020 3 3.591 0.021 4 3.802 3.790 3.590 0.020 3 3.591 0.021 5 4.800 4.000 5 4.886 0.006 5 4.892 6 3.740 3.700 0.020 7 4.129 0.001 6 6 3.403 4.203 0.020 7 4.129 0.001 1 1.01 9 4.090 4.046 0.800 9 0.001 1 1.01 1.01						Infrared C	Calibrati	ion Report										
Instrumer, Foos FT Old Bias 0.000 Bias Change: -0.191 Odd Bias 0.000 Bias Change: -0.191 Sample Reference R Difference 1.054 1 3.390 3.900 0.000 2 3.991 0.020 2 3.960 0.900 2 3.991 0.021 3 3.750 0.500 0.203 4 3.802 -0.016 4 3.620 3.750 0.630 4 3.802 -0.016 5 4.966 4.060 0.606 - - - 6 4.050 0.020 5 4.380 -0.016 - 9 4.090 4.040 -0.050 9 4.066 -0.024 11 4.550 0.030 5 5.00 0.030 - 1.016 9 4.090 4.040 -0.050 9 4.066 -0.024 - 10 4.570 5.00 0.390 SDD 0.011 - - - - <																		
Operation: Paid Back: ES273 New Slope: 1.954 -0.191 Installed (Y or N) New Blas: Installed (Y or N) New Blas: Sample 1 3.390 3.380 3.380 0.000 2 3.981 3.380 3.960 3.690 0.000 2 3.981 0.021 3 3.570 3.560 0.000 2 3.981 0.021 0.021 0.011 4 3.820 3.790 -0.000 4 3.802 0.790 0.021 5 4.860 4.000 -0.000 5 4.866 0.024 0.021 5 4.860 4.000 -0.000 7 4.129 0.009 0.024 7 4.120 4.000 -0.020 7 4.129 0.019 0.024 9 4.050 4.040 -0.020 7 4.129 0.014 0.011 10 4.670 4.600 -0.070 10 4.656 0.024 0.011 11 4.561 0.011 -0.020 SDD 0.018 -0.024 0.011 -0.024 11 4.560 0.0300 SDD 0.018																		
Bach: ELS273 Image: Component: Fat New Slope: 1.054 Installed (Y or N) Sample Reference R Difference Sample Adj. R Difference Comments 1 3390 3.360 -0.000 2 3.961 0.021 0.220 2 3.960 0.000 2 3.961 0.021 0.220 3 3.570 3.590 0.000 4 3.002 0.016 5 4.860 4.000 5 4.66 0.065 0.024 6 3.750 0.020 7 4.708 0.021 6 4.501 4.006 0.024 0.014 6 9 4.050 4.060 0.024 0.014 6 0.014 11 4.550 0.000 1 4.666 0.024 6 0.014 10 4.570 4.060 0.024 0.011 6 0.014 6 11 4.560 0.010 1.6 0.016 0.016 0.016 0.016 0.016 <								Old Blas:	0.000	Blas Change:	-0.191							
Component: Fat New Slope: 1.054 Installed (V or N) Sample Reference R Difference Sample Adj. R Difference Comments 1 3.390 3.380 0.010 1 3.370 0.020 3 3.560 3.560 0.020 3 3.591 0.211 4 3.820 3.790 0.020 3 3.591 0.211 5 4.660 4.600 -0.600 5 4.4866 0.006 6 3.740 3.750 0.010 6 3.760 0.220 7 4.120 4.000 -0.600 8 4.086 0.012 9 4.050 4.060 0.024 11 4.561 0.014 10 4.670 4.600 -0.600 SDD 0.018 12 9 4.050 0.030 SDD 0.016 14 14 14 11 4.550 ND SDD																		
Component: Fat Ver Bias: 0.191 N Sample Adj.IR Difference Sample Adj.IR Difference Comments 1 3390 3390 3300 0.010 1 3370 0.202 2 3560 3950 0.020 3 3511 0.211 4 3320 3.703 10.030 4 3802 -0.018 5 4.860 4.800 -0.600 5 4.866 0.060 6 3.740 3.750 0.010 6 3.760 0.020 7 4.120 4.100 -0.020 7 4.129 0.009 8 4.220 4.050 8 4.308 -0.012 - 9 4.900 4.040 -0.050 9 4.066 - - 11 4.550 4.510 - 10 4.551 ND - - 10 4.500 - 1002 ND SDD 0.018 - - - - 10teca			20210					New Slope:	1.054	Installed (Y or N)								
1 3.390 3.80 0.010 1 1 3.370 0.020 3 3.570 3.590 0.020 3 3.591 0.021 3 3.570 0.590 0.020 3 3.591 0.021 4 3.820 3.740 0.060 5 4.666 0.006 6 3.740 3.750 0.010 6 3.760 0.020 7 4.120 4.100 0.020 7 4.129 0.009 8 4.320 4.270 0.060 8 4.308 0.012 9 4.090 4.040 0.050 9 4.066 0.024 10 4.670 4.600 0.070 10 4.656 0.014 11 4.550 4.510 0.040 11 4.561 0.011 12 MD 0.027 MD 0.000 SDD 0.030 SDD 0.018 Tolerances are not satisfied. Outiers can be deleted. OTE: Only cells in blue should be modified.	Compo	onent:	Fat															
1 3.390 3.80 -0.010 1 3.370 -0.020 3 3.570 3.590 0.020 3 3.591 0.021 3 3.570 -0.590 0.420 3 3.591 0.021 4 3.820 3.790 -0.030 4 3.802 -0.018 5 4.860 4.000 -0.060 5 4.966 0.006 6 3.740 3.750 0.010 6 3.760 0.020 7 4.120 4.100 -0.020 7 4.129 0.008 6 3.740 3.750 0.010 6 3.760 0.024 9 4.090 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.666 -0.014 11 4.550 4.510 -0.140 11 4.561 0.011 12 10 MD -0.020 ND 0.018 10 10 sclabrate if both tolerances are not satisfied. Outiers can be deleted.	C		Deferrer	ID	D:#		Comula		D:#	Commente								
2 3 3960 0.000 2 3.81 0.021 3 3570 3.590 0.202 3 3.591 0.021 4 3800 3.790 0.030 4 3.802 -0.018 5 4660 4.800 -0.060 5 4.4666 0.005 6 3.740 3.750 0.010 6 3.760 0.020 7 4.120 4.100 0.020 7 4.129 0.009 8 4.320 4.270 0.650 8 4.308 -0.012 9 4.660 4.040 0.060 5 4.4666 -0.014 10 4.670 4.600 -0.070 10 4.666 -0.014 11 4.561 0.011 12										Comments								
3 3 570 3 590 0.020 3 3 591 0.021 4 3820 3 790 0.030 4 880 0.018 5 4 660 4 800 -0.060 5 4 866 0.002 7 4 120 4 100 -0.020 7 4 123 0.009 8 4 320 4 270 -0.050 8 4 308 -0.012 9 4 090 4 040 -0.050 8 4 308 -0.012 9 4 090 4 040 -0.050 8 4 308 -0.012 9 4 090 4 040 -0.050 9 4 066 -0.024 10 4 670 4.600 -0.070 10 4 556 -0.014 11 12																		
5 4.860 4.800 4.000 5 4.866 0.006 7 4.120 4.100 -0.020 7 4.129 0.002 8 4.320 4.200 0.050 8 4.308 -0.012 9 4.000 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.656 -0.014 11 4.550 4.510 -0.040 11 4.561 0.011 12 12 12 12 12 12 12 12 MD -0.027 MD 0.000 SDD 0.018 14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
6 3.760 0.010 6 3.760 0.020 7 4.120 4.100 -0.020 7 4.123 0.009 8 4.320 4.270 -0.050 8 4.308 -0.012 9 4.060 -0.0170 10 4.666 -0.024 10 4.670 4.600 +0.0170 10 4.666 -0.014 11 11 4.561 0.011 12			3.820		-0.030		4	3.802										
7 4 120 4 100 -0.020 7 4 129 0.009 8 4.320 4.270 -0.050 8 4.308 -0.012 9 4.090 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.656 -0.014 11 4.550 4.510 -0.040 11 4.666 -0.011 12 12 12 12 12 12 12 MD -0.020 SDD 0.030 SDD 0.018 Tolerances MD <+/td> 0.150 IN IN IN IN ecalibrate if both tolerances are not satisfied Outliers can be deleted. IN IN IN IN IT only cells in blue should be modified. IN IN IN IN IN IN IT only cells in blue should be modified. IN																		
8 4.320 4.270 -0.050 8 4.308 -0.012 9 4.690 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.656 -0.024 11 4.560 4.510 -0.040 11 4.561 0.011 12 12 12 12 12 12 12 12 12 0 0.027 MD 0.000 SDD 0.018 14 14 150 N Tolerances MD -0.027 MD 0.000 0.018 14 14 150 N 14 150 N 150 N 150 N 150 N 150 10 14																		
9 4.090 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.656 -0.014 11 4.550 4.510 -0.040 11 4.561 0.011 12 - - 12 - - - - MD -0.027 MD 0.000 SDD 0.030 SDD 0.018 Tolerances MD < +/-																		
10 4.670 4.600 -0.070 10 4.656 -0.014 11 4.550 4.510 -0.040 11 4.661 0.011 12																		
11 4.550 4.510 -0.040 11 4.561 0.011 12																		
12 MD -0.027 MD 0.000 SDD 0.030 SDD 0.018 Tolerances MD <+/td> 0.150 IN sDD <																		
SDD 0.030 SDD 0.018 Tolerances MD < +/-																		
SDD 0.030 SDD 0.018 Tolerances MD < +/-																		
Tolerances MD <+/-																		
SDD < 0.150 N ecalibrate if both tolerances are not satisfied. Outliers can be deleted. OTE: Only cells in blue should be modified.				SDD	0.030			SDD	0.018									
SDD < 0.150 N ecalibrate if both tolerances are not satisfied. Outliers can be deleted. OTE: Only cells in blue should be modified.	Toloran	1005	MD < +/-	0 150	IN													
ecalibrate if both tolerances are not satisfied. Outliers can be deleted. OTE: Only cells in blue should be modified. OTE: Only cells in blue should be modified. Image: Control of the c	Tuleran	ices																
OTE: Only cells in blue should be modified. Image: Control of the																		
M A	Recalibra	ate if both	h tolerances	are not sati	sfied. Outliers	can be delete	d.											
M A			a in blue abs	المعادية	E - J													
	IOIE. U	July Cells	s in blue sho	bula be moai	lied.													
	► ► D	ata G	raphs / She	eet 3 <u>/ Sh</u> ee	t 4 / Sheet 5	/\$2/]∢							
🚬 🤌 🏢 👰 🚺 Sticky Notes 🔣 Microsoft Excel - J	ly															🗆 🛄 100% (-)0	
			e		35 🥢	Sticky Notes		Microsoft Ex	cel - J								3:	

2015 Calendar

	January 2015											
М	Tu	W	Th	Fr	Sa	Su						
			1	2	3	4						
5	6	7	8	9	10	11						
12	13	14	15	16	17	18						
19	20	21	22	23	24	25						
26	27	28	29	30	31							

	April 2015											
М	Tu	W	Th	Fr	Sa	Su						
		1	2	3	4	5						
6	7	8	9	10	11	12						
13	14	15	16	17	18	19						
20	21	22	23	24	25	26						
27	28	29	30									

	May 2015											
М	Tu	W	Th	Fr	Sa	Su						
				1	2	3						
4	5	6	7	8	9	10						
11	12	13	14	15	16	17						
18	19	20	21	22	23	24						
25	26	27	28	29	30	31						

	September 2015												
М	Tu	W	Th	Fr	Sa	Su							
	1	2	3	4	5	6							
7	8	9	10	11	12	13							
14	15	16	17	18	19	20							
21	22	23	24	25	26	27							
28	29	30											

February 2015

Μ	Tu	W	Th	Fr	Sa	Su
2	3	4	5	6	7	1
9	10	11	12	13	14	15
16 23	17 24	18 25	19 26	20 27	21 28	22

August 2015										
М	Tu	W	Th	Fr	Sa	Su				
					1	2				
3	4	5	6	7	8	9				
10	11	12	13	14	15	16				
17	18	19	20	21	22	23				
24	25	26	27	28	29	30				
31										

June 2015

Μ	Tu	W	Th	Fr	Sa	Su
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19		21
22	23	24	25	26	27	28
29	30					

	October 2015										
Μ	Tu	W	Th	Fr	Sa	Su					
			1	2	3	4					
5	6	7	8	9	10	11					
12	13	14	15	16	17	18					
19	20	21	22	23	24	25					
26	27	28	29	30	31						

	March 2015										
N	l Tu	W	Th	Fr	Sa	Su					
						1					
2	2 3	4	5	6	7	8					
g	10	11	12	13	14	15					
16	5 17	18	19	20	21	22					
23	24	25	26	27	28	29					
30	31										
December 2015											
Ν/	. т.,	۱۸/	Th	Er	60	C					

Μ	Tu	W	Th	Fr	Sa	Su
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

	July 2015								
Μ	Tu	W	Th	Fr	Sa	Su			
		1	2	3	4	5			
6	7	8	9	10	11	12			
13	14	15	16	17	18	19			
20	21	22	23	24	25	26			
27	28	29	30	31					

	November 2015										
М	Tu	W	Th	Fr	Sa	Su					
						1					
2	3	4	5	6	7	8					
9	10	11	12	13	14	15					
16	17	18	19	20	21	22					
23	24	25	26	27	28	29					
30											

0 10 10 1	9	- (~ -	-				J	an 2, 2015.xlsx.xls	[Compatibilit	y Mode] - Microsof	t Excel]
Image Name Image Name <th>File</th> <th>Home</th> <th>Insert Pa</th> <th>age Layout</th> <th>Formulas</th> <th>Data Revie</th> <th>w View</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>۵ 🕜</th> <th>- 6</th>	File	Home	Insert Pa	age Layout	Formulas	Data Revie	w View	1									۵ 🕜	- 6
Barlow B I <th></th> <th></th> <th>Times N</th> <th>New Roman 👻</th> <th>16 · A A</th> <th>· = = =</th> <th>\$%,-</th> <th>🚽 Wrap Text</th> <th>Gene</th> <th>ral 🔹</th> <th>≤₹</th> <th></th> <th></th> <th></th> <th>*</th> <th></th> <th>7</th> <th>ĥ</th>			Times N	New Roman 👻	16 · A A	· = = =	\$%,-	🚽 Wrap Text	Gene	ral 🔹	≤₹				*		7	ĥ
Cilpbade Font In All Font In All poment S plyss Cells Edition Al <th>ct o</th> <th></th> <th>B I</th> <th><u>u</u> -</th> <th>- <u>> A</u></th> <th></th> <th><. ></th> <th>🔤 Merge & Ce</th> <th>nter - \$ -</th> <th>% , €.0 .00</th> <th></th> <th>al Format</th> <th>Cell</th> <th></th> <th>elete Format</th> <th></th> <th>Sort & Fi</th> <th>nd &</th>	ct o		B I	<u>u</u> -	- <u>> A</u>		<. >	🔤 Merge & Ce	nter - \$ -	% , €.0 .00		al Format	Cell		elete Format		Sort & Fi	nd &
A1 + A2 FZ DHA A B C D E F G H I J K L M N O P C Date 02.3an.15 Infrared Calibration Report Od Stope 1.000 Stope Change 1.04 M N O P C Date 02.3an.15 Infrared Calibration Report Old Stope 1.000 Stope Change 1.04 Bits Change 1.04 Infrared Calibration Report Batch ELS273 Infrared Calibration Report New Stope 1.064 Intelled (Y or H) N Infrared Calibration Report Sample Reference R Difference Sample Adj. IR Difference Comments 1 3.300 3.380 -0.010 6 3.760 0.020 7 4.120 4.00 1 3.370 4.020 1											Formatting		Styles *	*				lect ∗
A B C D E F G H I J K L M N O P C Date 02.4an-15 Infrared Calibration Report 006 Base 1.000 Stope Change: 1.054 Base Change: 0.164 Date 0.000 Date 0.000 Date 0.001 Date 0.002 Date Date 0.000 Date Date </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						-						,						
CYZ DHI Infrared Calibration Report State Infrared Calibration Report Bate 0/d Siloge 1000 Sloge Change: 1.064 Gromonett Fat New Siloge 1.064 Sloge Change: 0.191 Sample Reference R Difference Sample Adj. R Difference Comments 1 3.990 3.980 0.000 2 3.991 0.021 N N 3 3.570 3.590 0.000 2 3.991 0.021 N						E	F	G	Н		J	K	L	M	N	0	Р	G
Date: 02-an-15 (nstrumer): 000 Slope: 1.000 Bits: Slope Change: 0.0191 Operator: Fat New Slope: 0.191 New Slope: 0.191 Sample Rescale: New Slope: 0.191 New Slope: 0.191 2 3390 .0100 1 3370 .0000 New Slope: 0.021 3 3570 3580 0.020 3 3591 0.021 3 3570 3580 0.020 3 3591 0.021 4 3820 3780 0.020 3 3591 0.021 3 3570 3580 0.020 3 3591 0.021 4 3820 3780 0.020 7 4.129 0.010 6 37.40 3760 0.020 7 4.129 0.011 1 1 9 4.090 -0.020 7 4.129 0.011 1 1 1 1 1 1			A			Infrared (Calibrati	ion Report										
Instrumer: For performer: Fail Old Bias: 0.000 Bias Change: -0.191 Component: Fail New Slope: 1.054 Installed (Y or N) N Sample Reference IR Difference Sample -0.191 1 3.350 3.960 0.000 2 3.961 0.020 2 3.960 3.960 0.000 2 3.961 0.021 3 3.750 3.900 0.033 4 3.802 4.016 4 3.620 4.050 6 4.660 -0.620 5 4.660 4.660 -0.620 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
Operatic EASL New Slope: 1.954 Installed (Y or N) Sample Reference IR Difference Sample Adj. IR Difference Comments 1 3.390 -0.010 1 3.370 -0.020 -0.020 3 3.570 3.590 0.020 3 3.591 0.021 4 3.820 3.790 -0.020 3 3.591 0.021 5 4.860 4.000 -0.600 5 4.866 0.066 6 3.740 3.750 0.020 7 4.129 0.009 7 4.120 4.000 -0.600 5 4.866 0.024 9 4.060 4.020 7 4.129 0.009 - <t< td=""><td>Insta</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Insta																	
Back: ELS273 Image: Component: Reference Reference Sample Adj. R Difference Comments 1 3390 3.360 -0.000 2 3.961 0.021 2 3.960 0.000 2 3.961 0.021 3 3.570 3.560 0.000 2 3.961 0.021 4 3.820 3.703 -0.000 4 3.002 -0.116 5 4.660 4.000 -0.620 -0.600 -0.621 5 4.660 4.000 -0.620 -0.600 -0.624 6 3.710 0.720 -0.600 -0.624 -0.610 7 4.000 -0.000 -0.624 -0.610 -0.71 9 4.090 -0.027 MD 0.010 -0.624 11 4.561 0.011 -0.624 -0.616 -0.614 12 - MD -0.027 MD 0.000 -0.616 10 4.570 1.04 -0.616 0.016 -0.616 -0.616 -								Old Blas:	0.000	Blas Change:	-0.191							
Component: Fat New Slope: 0.154 Installed (V or N) Sample Reference IR Difference Sample Adj. R Difference Comments 1 3390 3380 0.010 1 3370 0.020 3 3560 3560 0.020 3 3.591 0.021 4 3320 3790 0.020 3 3.591 0.021 5 4.660 4.000 -0.060 5 4.4866 0.020 6 3.740 3.750 0.010 6 3.760 0.224 7 4.120 4.000 0.060 5 4.866 0.024 9 4.050 4.066 0.024 0.014 0.014 0.014 10 4.570 4.500 0.040 11 4.561 0.014 0.014 0.014 11 4.560 0.024 0.011 0.000 0.016 0.016 0.016 0.016 0.016 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
Component: Fat Fat Mew Bias: 0.191 N Sample Adj.IR Difference Sample Adj.IR Difference Comments 1 3390 3390 3300 0.000 2 3391 0.021 2 3360 3950 0.020 3 3510 0.500 1 370 3 3570 3500 0.020 3 3510 0.021 1		Daton	LLOLIO					New Slope:	1.054	Installed (Y or N)								
1 3.390 3.80 0.010 1 3.370 0.020 3 3.570 3.590 0.020 3 3.591 0.021 3 3.570 0.590 0.020 3 3.591 0.021 4 3.820 3.790 -0.030 4 3.802 -0.108 5 4.860 4.800 -0.060 5 4.866 0.006 6 3.740 3.750 0.020 7 4.129 0.009 7 4.120 4.100 -0.020 7 4.129 0.009 8 4.320 4.270 -0.060 8 4.380 -0.012 9 4.090 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.656 -0.014 11 4.551 0.111 4.51 0.011 -12 -12 MD -0.020 ND SDD 0.018 -12 -12 -12 ecalibrate flooth tolerances are not satisfied. Ottiers can be deleted.	Com	ponent:	Fat															
1 3.390 3.80 0.010 1 3.370 0.020 3 3.570 3.590 0.020 3 3.591 0.021 3 3.570 3.590 0.020 3 3.591 0.021 4 3.820 3.790 -0.030 4 3.802 -0.018 5 4.860 4.600 -0.060 5 4.666 0.006 6 3.740 3.760 0.010 6 3.760 0.020 7 4.120 4.100 -0.020 7 4.129 0.009 8 4.320 4.270 -0.060 8 4.380 -0.012 9 4.090 4.040 -0.050 8 4.080 -0.014 11 4.551 0.011 12 12 12 12 MD -0.020 SDD 0.030 SDD 0.018 14 12 ND 5DD 0.030 SDD 0.018 14 12 ND 5DD 0.018 14 14 14	C		Deferrer	ID	Differences		Comula		D:#	Commente								
2 3 3960 0.000 2 3 381 0.021 3 3570 3.690 0.020 3 3.591 0.021 4 3820 3.790 -0.030 4 3.802 -0.018 5 4.860 4.860 -0.060 5 4.4666 0.006 6 3.740 3.760 0.020 7 4.129 0.009 8 4.320 4.010 -0.020 7 4.129 0.009 8 4.320 4.010 -0.020 7 4.129 0.009 8 4.320 4.010 -0.027 0 10 4.666 -0.014 11 4.650 4.510 -0.040 11 4.656 -0.014 11 4.550 4.510 -0.040 11 4.656 -0.014 12										Comments								
3 3.570 3.590 0.020 3 3.591 0.021 4 3820 3.790 0.030 4 8.802 0.050 5 4.800 4.000 0.060 5 4.866 0.005 6 3.740 3.750 0.010 6 3.760 0.020 7 4.120 4.100 -0.020 7 4.123 0.009 8 4.320 4.270 -0.60 8 4.308 -0.012 9 4.000 4.050 9 4.066 -0.024 10 4.670 4.600 -0.07 10 4.656 -0.024 11 4.500 4.510 -0.040 11 4.561 0.011 12 12 - - - - SDD 0.030 SDD 0.018 - - - - Tolerances MD <+/td> 0.50 N - - - - - VD 0.020 ND 0.018 - -																		
5 4.860 4.800 -0.060 5 4.866 0.006 7 4.120 4.100 -0.020 7 4.129 0.000 8 4.320 4.200 0.050 8 4.308 -0.012 9 4.000 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.656 -0.014 11 4.550 4.510 -0.040 11 4.561 0.011 12 12 12 12 12 12 14 14 12 12 12 12 14 14 14 14 14 14 14 15 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 16																		
6 3.760 0.010 6 3.760 0.020 7 4.120 4.100 -0.020 7 4.129 -0.050 8 9 4.030 4.040 -0.050 9 4.066 -0.024 -0.012 9 4.050 4.010 -0.050 9 4.066 -0.024 -0.014 11 4.550 4.510 -0.040 11 4.561 0.011 -0.027 MD -0.027 MD 0.000 SDD 0.030 SDD 0.018 Tolerances MD -0.027 MD 0.000 -0.014 -0.027 SDD 0.030 SDD 0.018 -0.027 -0.027 -0.027 SDD 0.030 SDD 0.018 -0.027 -0.027 -0.014 -0.027 SDD 0.150 IN -0.027 -0.027 -0.027 -0.027 -0.027 SDD 0.160 IN -0.027 -0.027 -0.027 -0.027 -0.027 SDD 0.150 IN -0.027			3.820		-0.030		4	3.802										
7 4 100 -0.020 7 4 129 0.009 8 4.320 4.707 -0.050 8 4.308 -0.012 9 4.090 4.040 -0.050 9 4.066 -0.024 10 4.570 4.600 -0.070 10 4.566 4.014 11 4.560 -0.040 11 4.566 4.014 - - 12 - 12 - 12 - - - - MD -0.027 MD 0.000 SDD 0.030 SDD 0.018 - - - Tolerances MD <+/td> 0.150 N - - - - - - scalibrate if both tolerances are not satisfied. Outliers can be deleted. - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
8 4.220 4.270 -0.050 8 4.308 -0.012 9 4.090 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.656 -0.024 11 4.550 4.510 -0.40 11 4.551 0.011 12 12 12 12 12 12 12 12 MD -0.027 MD 0.000 SDD 0.018 14 14 150 11 150 1N 12																		
9 4.090 4.040 -0.050 9 4.066 -0.024 10 4.670 4.600 -0.070 10 4.656 -0.014 11 4.550 4.510 -0.040 11 4.561 0.011 12 12 12 12 12 12 12 12 14																		
10 4.670 4.600 -0.070 10 4.656 -0.014 11 4.550 4.510 -0.040 11 4.561 0.011 12 12 12 12 12 12 12 14																		
11 4.550 4.510 -0.040 11 4.561 0.011 12 MD -0.027 MD 0.000 SDD 0.018 Tolerances MD <+/td> 0.150 N SDD 0.018 Image: Constraint of the state of the st																		
12 MD -0.027 MD 0.000 SDD 0.030 SDD 0.018 Tolerances MD <+/td> 0.150 IN scalbrate if both tolerances are not satisfied. Outliers can be deleted. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. OTE: Only cells in blue should be modified. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances are not satisfied. Image: Control of the state if both tolerances if b																		
SDD 0.030 SDD 0.018 Tolerances MD < +/- 0.150 IN																		
SDD 0.030 SDD 0.018 Tolerances MD < +/- 0.150 IN																		
Tolerances MD < +/-																		
SDD < 0.150 IN eccalibrate if both tolerances are not satisfied. Outliers can be deleted. OTE: Only cells in blue should be modified. OTE: Only cells in blue should be modified.				SDD	0.030			SDD	0.018									
SDD < 0.150 IN eccalibrate if both tolerances are not satisfied. Outliers can be deleted. OTE: Only cells in blue should be modified. OTE: Only cells in blue should be modified.	Tolor	ances	MD < +/-	0 150	IN													
ecalibrate if both tolerances are not satisfied. Outliers can be deleted.	Tulera	ances																
OTE: Only cells in blue should be modified.																		
Image: Sector of the sector	Recalib	orate if bo	oth tolerances	are not sati	sfied. Outliers	can be delete	d.											
Image: Sector of the sector		Onlying	lla in blue abs	المراجع	E . J													
	IUIE.	Only Ce	ells in blue sho	oula be moal	lied.													
	▶ ▶	Data	Graphs / She	eet 3 <u>/</u> Shee	et 4 🖉 Sheet 5	. 🔁 /			·]∢		1					
🚬 🤌 🏢 👰 👘 Sticky Notes 🔀 Microsoft Excel - J	ly															🗆 🛄 100% 🤆)0	
			e		<u>y</u>	Sticky Notes		Microsoft Ex	cel - J							- 		

Auditability

Lab Managers / staff should be conducting internal audits of their policies, procedures, records etc.

This should include confirmation that all records for each required procedure are available, accurate and complete.

This task is much easier with an organized digital system.

Portions of the job can be automated (automatic flags when data is missing or incomplete).

External Auditors can work more effectively and efficiently with organized electronic records.

Added Value:

With electronic records, routine QC data can deliver added value to the Lab Manager:

- Monitoring equipment wear and tear
- *Monitoring lab efficiency*
- Monitoring lab performance, control charting
- Comparing results from different analyzers
- Comparing results from different Technicians

XYZ DHIA

Line 1

2015

Date	Technician	H-INDEX	Pass / Fail
aug 3.2015	AR.	6.1	[4] Pass [] Fail
any 2015	nox.	10.0	[IJ Pass [] Fail
an 5 2015	1DINS	6.0	[/] Pass [] Fail
046 2016	16M	6.1	[Y Pass [] Fail
ang-1 2015	1003	5.9	[Y Pass [] Fail
abic 2015	DAS	5.9	[/] Pass [] Fail
ad 11 2015	That a	6.0	[4] Pass [] Fail
and 12 2015	nns	5.9	[/] Pass [] Fail
ah 13, 2015	DB.	S.Y	[4] Pass [] Fail
aut 14, 2015	028	5.8	[Y Pass [] Fail
ac 17 2015	9008	6.9	[Pass [] Fail
aut 12, 2015	1218	57	[4] Pass [] Fail
au 19 2015	112 R	57	[Y] Pass [] Fail
Jun 20, 2015	MAR.	5.8	Pass [] Fail
au 21 2015	' DAB	5.6	[4] Pass [] Fail
aly 24, 2015	DR.	5.5	[Y Pass [] Fail
and 75 2015	1/1X	5.6	[YPass [] Fail
al 26 2015	1000	5.7	[Pass] Fail
an 21 2015	Mix	5.6	['] Pass [] Fail
ang 28, 2015	(B)	5.6	[] Pass [] Fail
au 31 2015	Mr Si	5.4	[4] Pass [] Fail
Sen 2015	0LB	5.4	[y] Pass [] Fail
Sent 2015	Y/20	5.3	[Y Pass [] Fail
LA122116	Mr.	5.4	[] Pass [] Fail
8409 2015	MPS.	5.3	[Y] Pass [] Fail
Ser7. 205	DRX.	5.3	[Y] Pass [] Fail
Jul 9 2015	1/118	5.3	[] Pass [] Fail

H-INDEX Values must be > 5.2 to 6.0

H-INDEX Line 1 2015

H-INDEX Line 1 2015

Added Value:

Similar trend analyses can be done with many of the routine *QC* checks:

- Pilot sample checks
- Zero checks
- Repeatability checks
- Calibration checks
- Purging efficiency checks
- Purge volume checks
- Performance checks (samples unknown)

100% Paperless – Is it possible?

- *PM reports from equipment suppliers (hard copies)*
- Calibration certificates (thermometers, balances, pipettes)
- Letters from customers
- Test kit instructions (ELISA)

There will likely always be the need to keep <u>some</u> hard copy records.

Some of these could be scanned and maintained electronically.

Conclusions:

A paperless lab, if set-up and operated properly is:

- More reliable
- More cost effective
- More thorough
- More complete
- More accurate
- Easier to audit
- Greener

It's not that difficult!

Thank-you

